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L-functions and zeta functions
Given a smooth projective geometrically integral curve X/Q of genus g
we wish to compute its L-function

L(X, s) :=
∑
n≥1

ann−s =
∏

p

Lp(p−s)−1,

where Lp ∈ Z[T] has degree at most 2g. At primes p of good reduction
the polynomial Lp(T) is the numerator of the zeta function

Z(Xp/Fp;T) := exp

( ∞∑
k=1

#Xp(Fpk)Tk/k

)
=

Lp(T)
(1− T)(1− pT)

.

Ignoring bad primes, computing L(X, s) ≈
∑

n≤N ann−s boils down to:

Given N, compute Lp(T) for all good primes p ≤ N.

In fact, for p >
√

N we only need to know the trace of Lp(T).
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Algorithms to compute zeta functions

Given a curve C/Q of genus g, we want to compute the normalized
L-polynomials Lp(T) at all good primes p ≤ N.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p log p
p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12?

average poly-time (log p)4 (log p)4 (log p)4
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Genus 3 curves

The canonical embedding of a genus 3 curve into P2 is either
1 a degree-2 cover of a smooth conic (hyperelliptic case);
2 a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:
rational hyperelliptic model [Harvey-S 2014];
no rational hyperelliptic model [Harvey-Massierer-S 2016].

Here we will focus on the second case.

Prior work has all been based on p-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],

[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]
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New algorithm

Let Cp/Fp be a smooth plane quartic defined by f (x, y, z) = 0.
For n ≥ 0 let f n

i,j,k denote the coefficient of xiyjzk in f n.

The Hasse–Witt matrix of Cp is the 3× 3 matrix

Wp :=

f p−1
p−1,p−1,2p−2 f p−1

2p−1,p−1,p−2 f p−1
p−1,2p−1,p−2

f p−1
p−2,p−1,2p−1 f p−1

2p−2,p−1,p−1 f p−1
p−2,2p−1,p−1

f p−1
p−1,p−2,2p−1 f p−1

2p−1,p−2,p−1 f p−1
p−1,2p−2,p−1

 .
This is the matrix of the p-power Frobenius acting on H1(Cp,OCp) (and
the Cartier-Manin operator acting on the space of regular differentials).
As proved by Manin, we have

Lp(T) ≡ det(I − TWp) mod p,

Our strategy is to compute Wp then lift Lp(T) from (Z/pZ)[T] to Z[T].
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Target coefficients of f p−1 for p = 7:

x4p−4 y4p−4

z4p−4
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Coefficient relations

Let ∂x = x ∂
∂x (degree-preserving). The relations

f p−1 = f · f p−2 and ∂xf p−1 = −(∂xf )f p−2

yield the relation ∑
ι++κ=4

(i + ι)fι,b,κf p−2
i−ι,j−,k−κ = 0.

among nearby coefficients of f p−2 (a triangle of side length 5).

Replacing ∂x by ∂y yields a similar relation (replace i + ι with j + j).
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Coefficient triangle

For p = 7 with i = 12, j = 5, k = 7 the related coefficients of f p−2 are:

x4p−8 y4p−8

z4p−8
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Moving the triangle

Now consider a bigger triangle with side length 7.
Our relations allow us to move the triangle around:

=⇒

An initial “triangle” at the edge can be efficiently computed using
coefficients of f (x, 0, z)p−2.
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Computing one Hasse-Witt matrix

Nondegeneracy: we need f (1, 0, 0), f (0, 1, 0), f (0, 0, 1) nonzero and
f (0, y, z), f (x, 0, z), f (x, y, 0) squarefree (easily achieved for large p).

The basic strategy to compute Wp is as follows:

There is a 28× 28 matrix Mj that shifts our 7-triangle from
y-coordinate j to j + 1; its coefficients depend on j and f .
In fact a 16× 16 matrix Mi suffices (use smoothness of C).
Applying the product M0 · · ·Mp−2 to an initial triangle on the edge
and applying a final adjustment to shift from f p−2 to f p−1 gets us
one column of the Hasse-Witt matrix Wp.
By applying the same product (or its inverse) to different initial
triangles we can compute all three columns of Wp.

We have thus reduced the problem to computing M1 · · ·Mp−2 mod p.
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An average polynomial-time algorithm
Now let C/Q be smooth plane quartic f (x, y, z) = 0 with f ∈ Z[x, y, z].
We want to compute Wp for all good p ≤ N.

Key idea
The matrices Mj do not depend on p; view them as integer matrices.
It suffices to compute M0 · · ·Mp−2 mod p for all good p ≤ N.

Using an accumulating remainder tree we can compute all of these
partial products in time O(N(log N)3+o(1)).

This yields an average time of O((log p)4+o(1)) per prime to compute
the Wp for all good p ≤ N.*

∗We may need to skip O(1) primes p where Cp is degenerate; these can be handled
separately using an Õ(p1/2) algorithm based on the same ideas.
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Accumulating remainder tree
Given matrices M0, . . . ,Mn−1 and moduli m1, . . . ,mn, to compute

M0 mod m1

M0M1 mod m2

M0M1M2 mod m3

M0M1M2M3 mod m4

· · ·
M0M1 · · ·Mn−2Mn−1 mod mn

multiply adjacent pairs and recursively compute

(M0M1) mod m2m3

(M0M1)(M2M3) mod m4m5

· · ·
(M0M1) · · · (Mn−2Mn−1) mod mn−1mn

and adjust the results as required.
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Timings for genus 3 curves
non-hyperelliptic hyperelliptic

N costa-AKR avgpoly harvey-K avgpoly

212 18.2 1.1 1.6 0.1
213 49.1 2.6 3.3 0.2
214 142 5.8 7.2 0.5
215 475 13.6 16.3 1.5
216 1,670 30.6 39.1 4.6
217 5,880 70.9 98.3 12.6
218 22,300 158 255 25.9
219 78,100 344 695 62.1
220 297,000 760 1,950 147
221 1,130,000 1,710 5,600 347
222 4,280,000 3,980 16,700 878
223 16,800,000 8,580 51,200 1,950
224 66,800,000 18,600 158,000 4,500
225 244,000,000 40,800 501,000 10,700
226 972,000,000 91,000 1,480,000 24,300

(Intel Xeon E7-8867v3 2.5 GHz CPU seconds).
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